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The C-ring of 19-hydroxytaxol is stereoselectively con-
structed by samarium(II) iodide-mediated intramolecular double
aldol cyclization of epoxyketo aldehyde to form the BC-ring unit
which has the desired stereochemistry.

To develop a new antitumor agent by synthesizing ana-
logues of a potent anticancer drug, taxol1 (1), 19-hydroxytaxol
(2) was chosen as a target molecule on the expectation that its
increased solubility in water will improve pharmacokinetics of
1 by introducing a hydroxy group to the 19-position of 1 and fur-
ther by introducing a hydrophilic molecule to the above 19-hy-
droxy group (Scheme 1). As 19-hydroxybaccatin III (3) is isolat-
ed in very small quantities from natural resources, synthesis of 2
and its derivatives in quantities for biological testing is difficult
from isolated 3. It was considered then that our strategy for the
total synthesis of 1 from D-pantolactone may be quite practical in
synthesizing 2: that is, to construct B-ring first and then to attach
C-ring and A-ring to thus constructed B-ring unit.1

In the preceding papers, new and efficient construction of
eight-membered B-ring 5 by samarium(II) iodide-mediated in-
tramolecular cyclization of a linear epoxyketo aldehyde 6,2

and the subsequent introduction of a side chain for the construc-
tion of C-ring by trimethylaluminum-assisted 1,4-addition of
higher order cyanocuprate3 were reported. In the above strategy
for the total synthesis of 2, construction of C-ring will be a key
step since a double aldol unit should be prepared stereoselective-
ly at this stage. The synthetic plan is to construct the C-ring by
samarium(II) iodide-mediated double aldol cyclization of

epoxyketoaldehyde (10) similar to B-ring construction. In this
communication, we would like to describe the stereoselective
C-ring construction of 2.

Preparation of the key intermediate, epoxyketo aldehyde 10,
is shown in Scheme 2: namely, hydroxymethyl ketone 7, pre-
pared by the above-mentioned 1,4-addition of higher order cya-
nocuprate, was acetylated first, and �,�-unsaturated ketone 8
was obtained by regioselective elimination of the formed �-acet-
oxymethyl ketone with DBU. After deprotection of triethylsilyl
group, epoxidation of enone using H2O2 and NaOH gave �-ep-
oxy ketone 9 as a 1:1 mixture of diastereomers. Swern oxidation
and tetrapropylammonium perruthenium (TPAP)-catalyzed oxi-
dation of the primary hydroxy group of a diastereomixture of 9
did not give the desired aldehyde 10 whereas sulfenamide-cata-
lyzed oxidation with N-chlorosuccinimide4 oxidized 9 success-
fully, and 10 was obtained in 95% yield.

Then, samarium(II) iodide-mediated cyclization of 10 was
tried (Table 1). First, the reaction was carried out at various tem-
peratures between �100 and �23 �C in the absence of additives
(Entries 1–4). The desired isomer 4 was obtained in 71% yield
along with diastereomers 12 (10%) and 13 (15%)5,6 at
�100 �C. On the other hand, the yields of both diastereomers
4 and 12 decreased as the reaction temperature rose. In these ex-
periments, a 1:1 diastereomixture of 10 was employed since the
results were the same even when a mixture or the single isomer
was used. Therefore, it is assumed that the desired facial selec-
tivity of the formed samarium enolate and an aldehyde moiety
would be controlled by lowering the reaction temperature. Next,
effects of additives were examined.2b,2c Contrary to our expecta-
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Scheme 2. Reagent and conditions: a) Ac2O, DMAP, pyridine
(89%); DBU, CH2Cl2 (75%); b) 0.5N HCl, THF, �20 �C
(88%); H2O2, NaOH, MeOH, 0 �C (79%); c) PhSNHtBu,
NCS, K2CO3, MS4A, CH2Cl2 (95%).
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tions, the addition of additives such as H2O, MeOH, i-PrOH, and
HMPA showed no improvement in the yield of the desired prod-
uct 4 while the yield of a diastereomer 12 increased. Formation
of diastereomer 11 was not observed through the above men-
tioned trials.

The stereochemistry of compound 4 was unambiguously
identified by X-ray crystal structure analysis of a MOM ether
14 which was obtained by the protection of 19-hydroxy group
of 4 with MOM group (Scheme 3, Figure 1).7

Currently, the total synthesis of 2 is in progress by utilizing

the BC-ring compound 4, prepared as above.
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Table 1. SmI2-mediated intramolecular cyclization of 10
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Entry Sml2 Additive Temp. Yield/%

/equiv. /equiv. /�C 4 11 12 13

1 3.0 - �100 71 NDa 10 15
2 3.0 - �78 59 ND 9 16
3 3.0 - �45 42 ND 3 20
4 5.0 - �23 24 ND 2 16
5 4.0 H2O (3.0) �78 45 ND 44 6
6 4.0 MeOH (3.0) �78 27 ND 38 7
7 3.0 iPrOH (3.0) �78 41 ND 35 9
8 3.0 HMPA (3.0) �78 45 ND 24 17

a The product was not detected.
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Scheme 3. Reagent and conditions; a) MOMCl, nBu4NI,
iPr2NEt, CH2Cl2 (76%).

Figure 1. ORTEP drawing of compound 14.
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